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Introduction

• Markov Decision Processes
• model “agent-environment-reward” systems.
• consist of States, Actions, Transition Probabilities, Rewards and
Discount factor (γ).

• A policy decides what action the agent takes at each state.
• Goal: To find the policy that maximizes “long-term” reward
(expected infinite discounted reward).

• State-value V π(s): long-term reward starting from s,
following policy π.

• Action-value Qπ(s, a): long-term reward starting from s,
taking a and following policy π thereafter.

• V π, Qπ: evaluated by solving a system of linear equations.
• If Qπ(s, a) > V π(s): we say s is an improvable state and a is
an improving action at s for policy π.

• Policy Iteration
• Start with an initial policy
• While the current policy is not optimal:
(1) Evaluate the policy;
(2) Select one or more improvable states;
(3) Select an improving action at each of

these states;
(4) Update the policy

• Different selection strategies −→ different PI variants.

Some PI variants

• Howard’s PI
• Earliest PI variant, introduced by [Howard, 1960].
• Every improvable state is improved; the improving actions are selected

arbitrarily.
• Randomised PI

• Introduced by [Mansour and Singh, 1999].
• The set of states to be improved is selected randomly from all
non-empty subsets of the set of improvable states; the improving actions
are selected arbitrarily.

• Batch-switching PI
• Introduced by [Kalyanakrishnan et al., 2016].
• Provides a scheme to translate upper bounds for constant -sized MDPs
to general MDPs.

• States divided into batches of size b; states only within a single batch
are allowed to be improved.

• Within a batch, selection of states to be improved and improving
actions can be dictated by some other algorithm (like HPI or RPI).

Contributions

Variant Previous This paper
HPI O(knn ) (O(k log k))n/2 for HPI-R

RPI
O(((1 + 2

log2 k
)k2)n) (O(k log k))n/2 for RPI-UIP

– Ω(n) for k = 2

BSPI O(k0.7207n)
O(k0.7019n) for BSPI(HPI)
O(k0.6782n) for BSPI(RPI)

A lemma on the structure of policy space

• Improvement sequence: the sequence consisting of the
number of improving actions for a policy at each state.

Main Result: The map from policies to their improve-
ment sequences is a bijection.

• Was discovered for k = 2 by [Gupta and Kalyanakrishnan,
2017]; we generalized to k ≥ 2.
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Proof structure

RPI-UIP takes at most O(kn/2H
(n−1)/2
k ) iterations.

HPI-R upper bound

1
1/2
1/2

HPI-R

Similar proof structure, but Ω(α/2n) policies are skipped at
large-improvement policies instead of Ω(α).

HPI-R takes at most O(2n/2kn/2H
(n−1)/2
k ) iterations.

2-action MDPs and AUSOs

• Policies of a n-state 2-action MDP can be arranged as the
vertices of n-dimensional Acyclic Unique Sink Orientation.

• n-AUSOs produced in this way are also known to satisfy the
Holt-Klee property: there are n inner-vertex-disjoint paths
from the source to the sink [Holt and Klee, 1999].

• By running RPI and HPI on all Holt-Klee 4-AUSOs, we
found that they take at most 6.5544 and 7 iterations resp. on
4-state 2-action MDPs.

• These translate to upper bounds of 1.6001n and 1.6266n for
BSPI (RPI) and BSPI (HPI) resp. on n-state 2-action MDPs

• Using ideas from [Gupta and Kalyanakrishnan, 2017], we get
deterministic and randomised PI algorithms taking
O(k0.7019n) and O(k0.6782n) iterations resp.
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(a) A 3-state 2-action MDP; A = {0, 1} (b) Improving actions for each state,
for each policy, demonstrating the bijection lemma (c) The 3-AUSO
corresponding to the above MDP

BSPI template

(a) 16 Holt-Klee 3-AUSOs (b) 6113 Holt-Klee 4-AUSOs

No. of iterations taken by HPI and RPI on AUSOs; Larger cirlcles
corresponding to multiple AUSOs

RPI lower bound for k = 2
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MDP Mn used to prove the RPI lower bound; A = {0, 1}; γ = 1

Starting from π0 = 0n, RPI takes at least n+1
2 iterations

on Mn in expectation.

Experiments

(a) (b)

• Each graph plots an average over 500 randomly generated
60-state MDPs.

• Figure (a) compares performance of HPI and RPI variants as
a function of k. Greedy action-selection rule is found to work
better in practice than a randomised one.

• Figure (b) plots the effect of batch size b on the number taken
by BSPI (HPI) and BSPI (RPI). For both variants, the no. of
iterations drops fairly consistently with increase in b.

• Howard’s improvable state selection rule performs better than
randomised selection, even within the framework of BSPI.

References

[Gupta and Kalyanakrishnan, 2017] Gupta, A. and
Kalyanakrishnan, S. (2017).
Improved strong worst-case upper bounds for mdp planning.
In IJCAI-17.

[Holt and Klee, 1999] Holt, F. and Klee, V. (1999).
A proof of the strict monotone 4-step conjecture.
Contemporary Mathematics.

[Howard, 1960] Howard, R. A. (1960).
Dynamic programming and Markov processes.

[Kalyanakrishnan et al., 2016] Kalyanakrishnan, S., Mall, U.,
and Goyal, R. (2016).
Batch-switching policy iteration.
In IJCAI-16.

[Mansour and Singh, 1999] Mansour, Y. and Singh, S. (1999).
On the complexity of policy iteration.
In UAI-99.


