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Introduction A lemma on the structure of policy space 2-action MDPs and AUSOs RPI1 lower bound for £ =2

« Markov Decision Processes « Improvement sequence: the sequence consisting of the =« Policies of a n-state 2-action MDP can be arranged as the
- model “agent-environment-reward” systems. number of improving actions for a policy at each state. vertices of n-dimensional Acyclic Unique Sink Orientation.

= consist of States, Actions, Transition Probabilities, Rewards and
Discount factor ().

« n-AUSOs produced in this way are also known to satisty the

- A policy decides what action the agent takes at each state Main Result: The map from policies to their improve- Holt-Klee property: there are n inner-vertex-disjoint paths
| i LI from the source to the sink [Holt and Klee, 1999].

« Goal: To find the policy that maximizes “long-term” reward ment sequences is a bijection. |

rexpected infinite giscoime 1 reward) 5 + By running RPI and HPI on all Holt-Klee 4-AUSOs, we

P | . . B . found that they take at most 6.5544 and 7 iterations resp. on MDP M,, used to prove the RPI lower bound; A = {0,1}; v = 1

= State-value V™ (s): long-term reward starting from s, - Was discovered for k = 2 by |Gupta and Kalyanakrishnan, Lstate 9-action MDPs

following policy 7. 2017]; we generalized to k > 2. '

Aot , _ | 1 _ « These translate to upper bounds of 1.6001"™ and 1.6266™ for
) X it.ZOWJ-?JCL Z(LfoH (S,CL) OlI.lg—tefIELTGWE;E starting from s, BSPI (RPI) and BSPI (HPI) resp. on n-state 2-action MDPs Starting from o = 0", RPI takes at least n+1 iterations

aking a and following polic ereafter. -

R TS POREYH - RPI-UIP upper bound - Using ideas from |Gupta and Kalyanakrishnan, 2017], we get on M, tn expectation.

- V7, Q" evalualed by solving a system of linear equations. deterministic and randomised PI algorithms taking

I Q7(s,a) > V7(s): we say s is an improvable state and a is O (K" ™019%) and O(K"57827) iterations resp.

an tmproving action at s for policy . Experiments
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« Different selection strategies — different PI variants. 001 {1} {1} {0} ’
010 {1} = {0} & V01— 011 - Each graph plots an average over 500 randomly generated
. : 60-state MDPs.
Some PI variants QM 83 0 10} . .
100/ ¢ 1} ¢ ! ! = Figure (a) compares performance of HPI and RPI variants as
Howard’s P Large-improvement N T e —— 101] ¢ {1} {0} 100 > 110 a funct.lon of k.. Greedy actlon—se’lectlon rule is found to work
lici i 1100 ¢ & b / / better in practice than a randomised one.
- Farliest PI variant, introduced by [Howard, 1960 POLCIES POLICIES : _ . .
« Bvery improvable state is improved; the improving actions are selected (more progress) (1688 progress) 111 % ¢ {O} 000 < 010 = '1gure (b) plots the effect of batch size b on the number taken
arbitrarily. \ (b) (<) by BSPI (HPI) and BSPI (RPI). For both variants, the no. of
- Randomised PI < k"/a visited < aH" ! in total ]Ea) A 3h'5tat|e Q'ZCtiO” MDP; Ah: EO» 1} (b)l |mPr0\Ei“)g _I?Eti%n; BOSF OeaCh state, iterations drops fairly consistently with increase in b.
- ' * — k or each policy, demonstrating the bijection lemma (c e 3- , ,
 Introduced by [Mansou,r and Singh, 1999). betore reaching 7 pd- yt the ab I\% DP ) - Howard’s improvable state selection rule performs better than
= The set of states to be improved is selected randomly tfrom all \ / corresponding to the above domised seloct e f L of BSP]
non-empty subsets of the set of improvable states; the improving actions randomised selection, even within the framework o ’
are selected arbitrarily. < k" / a -+ o Hl?_l visited in total

« Batch-switching Pl

- Introduced by [Kalyanakrishnan et al., 2016].

« Provides a scheme to translate upper bounds for constant -sized MDPs
to general MDPs.

= States divided into batches of size b; states only within a single batch
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