See discussions, stats, and author profiles for this publication at: [https://www.researchgate.net/publication/331959297](https://www.researchgate.net/publication/331959297_Lower_bounds_for_monotone_circuits_for_CS_721-_Computational_Complexity?enrichId=rgreq-9565c868b1c9c02a0c516453b3c76002-XXX&enrichSource=Y292ZXJQYWdlOzMzMTk1OTI5NztBUzo3MzkyNDE0MzY5MDk1NzhAMTU1MzI2MDMwMTg2Ng%3D%3D&el=1_x_2&_esc=publicationCoverPdf)

[Lower bounds for monotone circuits \(for CS 721- Computational Complexity\)](https://www.researchgate.net/publication/331959297_Lower_bounds_for_monotone_circuits_for_CS_721-_Computational_Complexity?enrichId=rgreq-9565c868b1c9c02a0c516453b3c76002-XXX&enrichSource=Y292ZXJQYWdlOzMzMTk1OTI5NztBUzo3MzkyNDE0MzY5MDk1NzhAMTU1MzI2MDMwMTg2Ng%3D%3D&el=1_x_3&_esc=publicationCoverPdf)

Presentation · October 2018

CITATIONS 0

READS 5

2 authors, including:

[SEE PROFILE](https://www.researchgate.net/profile/Meet_Taraviya?enrichId=rgreq-9565c868b1c9c02a0c516453b3c76002-XXX&enrichSource=Y292ZXJQYWdlOzMzMTk1OTI5NztBUzo3MzkyNDE0MzY5MDk1NzhAMTU1MzI2MDMwMTg2Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf)

Some of the authors of this publication are also working on these related projects:

Inference in Probabilistic Programming Languages [View project](https://www.researchgate.net/project/Inference-in-Probabilistic-Programming-Languages?enrichId=rgreq-9565c868b1c9c02a0c516453b3c76002-XXX&enrichSource=Y292ZXJQYWdlOzMzMTk1OTI5NztBUzo3MzkyNDE0MzY5MDk1NzhAMTU1MzI2MDMwMTg2Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf)

Lower bounds for monotone circuits

Meet Taraviya and Mukesh Pareek

IIT Bombay

CS 721 - Computational Complexity

March 22, 2019

 \leftarrow

Overview

[Definitions](#page-3-0)

- [Monotone functions](#page-3-0)
- [CLIQUE problem](#page-3-0)

2 [Theorem 1](#page-3-0)

- [Proof Terminology](#page-3-0)
- [Circuit Approximator](#page-3-0)
- **[Proof Outline](#page-3-0)**
- 3 [Lemma 1](#page-3-0)
	- 4 [Sunflower Lemma](#page-3-0)
- [Lemma 2](#page-3-0)
- 6 [Lemma 3](#page-3-0)

 \leftarrow

 Ω

Definition

For $x, y \in \{0, 1\}^n$, we denote $x \preccurlyeq y$ if every bit that is 1 in x is also 1 in y. A function $f: \{0,1\}^n \rightarrow \{0,1\}$ is *monotone* if $f(x) \leq f(y)$ for every $x \preccurlyeq y$.

Definition

A boolean circuit is said to be monotone if it only contains AND and OR gates.

Theorem

Every monotone circuit computes a monotone function, and every monotone function can be computed by a (sufficiently large) monotone circuit.

$$
\bullet \; NP \not\subset P_{/poly} \implies P \neq NP
$$

- If NP does not have polynomial-size circuits then $NP \not\subset P_{/poly}$
- The aim is to find problems in NP that are hard for poly-size circuits
- Best known lower bounds on non-uniform circuit size for problems in NP is linear, no super polynomial bounds known for even NEXP
- It is believed that the lower bound is exponential
- Razborov proved super polynomial monotone circuit bounds for the NP-complete problem CLIQUE (defined later) [Raz85]
- This was improved by Alon & Bopanna to show exponential bound for CLIQUE [AB87]

Clique in a graph

In the mathematical area of graph theory, a **clique** is a subset of vertices of an undirected graph such that every two distinct vertices in the clique are adjacent; that is, its induced subgraph is complete.

The CLIQUE function

The *clique function f_n* = $CLIQUE(n, k)$ has $\binom{n}{k}$ $\binom{n}{k}$ variables x_{ij} , one for each potential edge in a graph on n vertices $[n] = \{1,...,n\}$; the function outputs 1 iff the associated graph contains a clique (complete subgraph) on some k vertices.

Monotonicity of CLIQUE

The clique function is monotone because setting more edges to 1 can only increase the size of the larges clique. If a graph has a clique of size k, the clique can't vanish on adding an edge.

The CLIQUE problem

Clique is NP-complete

The clique decision problem is NP-complete. It was one of Richard Karp's original 21 problems shown NP-complete.

Proof of NP-completeness

The proof shows a many-one reduction from the Boolean satisfiability problem, which was shown to be NP-complete by Cook-Levin.

Figure: The 3-CNF satisfiability instance reduced to Clique. The green vertices form a 3-clique and correspond to a satisfying assign[me](#page-5-0)[nt](#page-7-0)[.](#page-5-0) Ω

A weaker problem

Prove that clique decision problem is hard to compute for monotone circuits. Monotone circuits are weaker than general circuits. Originally considered with a hope to extend the results to general circuits.

Monotone-circuit lower bound for CLIQUE [Raz85a, And85, AB87]

Theorem : There exists some constant $\epsilon > 0$ such that for every $k\le n^{1/4}$, there's no monotone circuit of size less than n \sqrt{k} that computes $CLIQUE_{n,k}; i.e. exponential monotone circuit lower bound for clique.$

つひひ

Proof Terminology

Clique Indicators

For every $S\subseteq [n]$, \mathcal{C}_S denotes the function on $\{0,1\}^{{n\choose 2}}$ that outputs 1 on a graph G iff the set S is a clique in G and is called the clique indicator of S. Note : $CLIQUE_{n,k} = \vee_{S\subseteq [n],|S|=k} C_S$

\mathcal{Y} : Distribution of Positive Graphs

It is the distribution of special graphs containing cliques on k vertices. Pick a set $K \subseteq [n]$ with $|K| = k$ at random. Output a graph that has a clique on vertices in K, and no other edges. $Pr[CLIQUE_{n k}(y)] = 1] = 1$

$\mathcal N$: Distribution of Negative Graphs

It is the distribution of special graphs with no clique of size k. Pick a function $c : [n] \rightarrow [k-1]$ at random. Output a graph that has an edge between u and v iff $c(u) \neq c(v)$. Pr[CLIQUE_{n,k} (N) = 0] = 1

To analyze the circuit, we approximate every small monotone circuit by a special type of monotone circuits characterized by DNFs. **Note** : $C_S = \wedge_{i \neq j \in S} x_{ij}$; is a monomial depending on ${ |S| \choose 2}$ $_2^{\mathsf{S}\vert}$) variables

(m,l)-approximator

An (m, I) -approximator, is an OR of at most m clique indicators, each of whose underlying vertex sets have cardinality at most l:

$$
A = \vee_{t=1}^{r} C_{S_t} = \vee_{t=1}^{r} \wedge_{i \neq j \in S_t} x_{ij} \quad (r \leq m, |S_t| \leq l)
$$
 (1)

 $l > 2$ and $m > 2$ are parameters depending only on values of k and n; which will be fixed later to complete the proof

We start by assuming that there exists a monotone circuit F computing $f_n = CLIQUE(n, k)$, and let F' be the approximated circuit, that is, an (m,l)-approximator of the last gate of F. We show that:

- Every approximator (including F') must make a lot of errors, that is, disagree with f_n on many negative an positive graphs.
- \bullet If size(F) is small, then F' cannot make too many errors.

This will imply that size(F) must be large.

 Ω

Every approximator either rejects all graphs or wrongly accepts at least a fraction $1-l^2/(k-1)$ of all $(k-1)^n$ negative graphs.

Proof : Let $A = \vee_{i=1}^{r} C_{S_i}$ be an (m,I)-*approximator*, and assume that A accepts at least one graph. Then $A \geq C_{S_1}.$ We have $\binom{|S_1|}{2}$ pairs of vertices in S_1 and for each such pair at most $(k-1)^{n-1}$ colorings assign the same color. Thus at most, $\binom{|S_1|}{2} (k-1)^{n-1} \leq \binom{N}{2}$ $\binom{1}{2}(k-1)^{n-1}$ negative graphs can be rejected by C_{S_1} and hence, by the approximator A.

Thus, every approximator (including F') must make a lot of errors.

Constructing the approximator F'

Given a monotone circuit F of size s for the $CLIQUE_{n,k}$, we will construct an (m, l) approximator F' for F in a "bottom-up" manner, starting from the input variables. Approximator for input variable x_{ij} will be $\mathsf{C}_{\{i,j\}}.$

For an internal node $f \vee g$ (resp. $f \wedge g$) we describe the construction of an (m,l) approximator $f \sqcup g$ (resp. $f \sqcap g$) such that F' does not make too many errors, i.e.

Lemma 2

The number of positive graphs wrongly rejected by F' is at most $s \cdot m^2 \binom{n-l-1}{k-l-1}$ $_{k-l-1}^{n-l-1}$).

Lemma 3

The number of negative graphs wrongly accepted by F' is at most $s \cdot m^2 l^{2p} (k-1)^{n-p}.$

We will also use sunflower lemma in our const[ruc](#page-11-0)[tio](#page-13-0)[n.](#page-12-0)

 QQ

Sunflower lemma

Theorem

Let $\mathcal Z$ be a collection of distinct sets each of cardinality at most l. If $|\mathcal{Z}|>(p-1)^l$!! then there exist p sets $Z_1,...,Z_p\in\mathcal{Z}$ and set Z such that $Z_i \cap Z_j = Z$ for every $1 \leq i \leq j \leq p$.

Proof.

By induction. $l = 1 : Z = \phi$ works.

Assume the statement is true for $l = k - 1$. For $l = k$, assume we have $M \subseteq \mathcal{Z}$, a maximal set of pairwise disjoint sets. If $|M| > p$, we have $Z = \phi$. Otherwise, each $x \in \bigcup M$ occurs in some $Z \in \mathcal{Z}$ (by maximality). $|\cup M| \leq k(p-1)$. Hence some x occurs in more than $\frac{(\rho-1)^k k!}{(\rho-1)k}=(\rho-1)^{k-1}(k-1)!$ sets in ${\mathcal Z}.$ After removing x from these sets, each set will be of size at most $k - 1$ and hence have a sunflower of size p with $k-1$ elements in each petal. Adding x to each petal gives a sunflower with k elements in each petal.

Theorem

There is a $\mathcal Z$, a collection of size $(p-1)^{l}$ of distinct sets each of cardinality at most l, with no sunflower with p petals.

Proof.

 $\mathcal{Z} = \{ \{ (i, f(i)) | i \in [l] \} | f : [l] \rightarrow [p-1] \}$ Consider $\mathcal{M} \subseteq \mathcal{Z}$ where $|M| = p$. Let (i, j) be an element not present in all sets in M. There are $p-1$ elements of the form $(i, *)$. So there are $M, M' \in \mathcal{M}$ such that $(i,j) \in M \cap M'$ for some j , but $(i,j) \notin \cap \mathcal{M} \Rightarrow \mathcal{M}$ is not a sunflower.

If f and g are (m, l) -functions, such that

$$
f = \bigvee_{i=1}^{m} C_{S_i}, g = \bigvee_{j=1}^{m} C_{T_j}
$$

 $h = f \vee g$ has at most 2m clauses, and hence may not be a (m, l) function. So we repeatedly replace groups of clauses $\mathsf{C}_{Z_1}... \mathsf{C}_{Z_p}$ with a stronger clause C_7 using sunflower lemma, until the number of clauses left is at most m. We call this procedure plucking. We define $f \sqcup g$ as the function obtained after plucking. To be able to apply sunflower lemma, we set $m := I!(p - 1)^{I}$.

つへへ

f $\Box g$

If f and g are (m, l) -functions, such that

$$
f = \bigvee_{i=1}^{m} C_{S_i}, g = \bigvee_{j=1}^{m} C_{T_j}
$$

we define

$$
h=\bigvee_{i=1}^m\bigvee_{j=1}^m C_{S_i\cup T_j}
$$

which has at most m^2 clauses. We remove clauses C_Z with $|\mathsf{Z}|>l$ and reduce the number of clauses to at most m by repeatedly applying the sunflower lemma as before (*plucking*). We define $f \sqcap g$ as the function obtained by this procedure. Note that

$$
f \wedge g = \bigvee_{i=1}^{m} \bigvee_{j=1}^{m} C_{S_i} \wedge C_{T_j} \neq h
$$

 Ω

Lemma 2

We defined $f \sqcup g$ by replacing some clauses from $f \lor g$ with a weaker clause. So $f \sqcup g$ does not wrongly reject **positive** graphs. Thus plucking does not introduce false negatives.

To approximate $f\wedge g$, we first replace $\mathcal{C}_{\mathcal{S}_i}\wedge\mathcal{C}_{\mathcal{T}_j}$ with $\mathcal{C}_{\mathcal{S}_i\cup\mathcal{T}_j}$, which behave identically on positive graphs. Hence this step does not introduce false negatives. Then we remove clauses with $| \mathcal{S}_i \cup \mathcal{T}_j | > l.$ Because of this, we wrongly reject positive graphs in which $S_i \cup \mathcal{T}_j$ is a clique - there are at most $\binom{n-l-1}{k-l-1}$ $\binom{n-l-1}{k-l-1}$ such graphs. Since we remove at most m^2 clauses, we wrongly reject at most $m^2 \binom{n-l-1}{k-l-1}$ $_{k-l-1}^{n-l-1}$) positive graphs. After this, we do plucking, which does not introduce any false negatives. Thus approximating $f \wedge g$ using $f \sqcap g$ introduces at most $m^2 \binom{n-l-1}{k-l-1}$ $_{k-l-1}^{n-l-1}$) false negatives.

Since there are at most s AND gates, F' wrongly rejects at most $s \cdot m^2 \binom{n-l-1}{k-l-1}$ $_{k-l-1}^{n-l-1}$) positive graphs. K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 』 ◇ Q Q @ # Wrongly accepted negative graphs when approximating $f \vee g$ using $f \sqcup g$? We will show that each plucking $Z_1, ..., Z_p \rightarrow Z$ increases this number by at most $l^{2p}(k-1)^{n-p}$ and we will do at most $2m$ such pluckings in one approximation step \Rightarrow at most $2ml^{2p}(k-1)^{n-p}$ wrongly accepted negative graphs OR gate.

Z must be a clique and none of Z_i s is a clique. We defined $G \in \mathcal{N}$ using a random function $c : [n] \rightarrow [k-1]$ with an edge between u and v whenever $c(u) \neq c(v)$. So we need c to be one-to-one on Z (event B) without being one to one on any Z_i (event A_i). $Pr[A_i|B] =$ probability of collision in $Z_i \setminus Z \leq \frac{l^2}{k-1}$ $\frac{l^2}{k-1}$. Since $Z_i \setminus Z$ are disjoint, $Pr[A_1 \wedge ... \wedge A_p \wedge B] \leq Pr[A_1 \wedge ... \wedge A_p | B] = \prod_{i=1}^p Pr[A_i | B] \leq l^{2p} (k-1)^{-p}.$

 Ω

 $A \cup B \rightarrow A \oplus B \rightarrow A \oplus B \rightarrow A \oplus B \rightarrow B$

For calculating the approximator $f\sqcap g$, replacing $\mathcal{C}_{\mathcal{S}_i}\wedge\mathcal{C}_{\mathcal{T}_j}$ with $\mathcal{C}_{\mathcal{S}_i\cup\mathcal{T}_j}$ or removing clauses with $|S_i \cup \mathcal{T}_j|>l$ does not introduce any false positives. Each plucking introduces at most $l^{2p}(k-1)^{n-p}$ false positives, with at most m^2 pluckings. Thus approximating AND gates introduces at most $m^2l^{2p}(k-1)^{n-p}$ false positives on negative graphs.

Thus each gate introduces at most $m^2l^{2p}(k-1)^{n-p}$ false positives on negative graphs. Hence F' wrongly accepts at most $s \cdot m^2 l^{2p} (k-1)^{n-p}$ negative graphs.

つへへ

Theorem

For 3 \leq k \leq n^{1/4}, the monotone circuit complexity of CLIQUE(n, k) is $n^{\Omega(\sqrt{k})}$

Proof.

Let F be a monotone circuit of size s deciding $CLIQUE(n, k)$. Construct F' as described using $l = \lfloor \frac{\sqrt{k-1}}{2} \rfloor$ $\frac{k-1}{2}$, $p = \Theta(\sqrt{k} \log n)$ and $m = I!(p - 1)^{l} \leq (pl)^{l}$. By lemma 1, there are 2 cases.

If F' is identically 0, applying lemma 2 gives $s \cdot m^2 \binom{n-l-1}{k-l-1}$ $_{k-l-1}^{n-l-1}) \geq {n \choose k}$ $\binom{n}{k} \Rightarrow s$ is $n^{\Omega(\sqrt{k})}$. (Because $\binom{n}{k}$ $\binom{n}{k} / \binom{n-x}{k-x}$ $\binom{n-x}{k-x} \geq \frac{(n/k)^x}{n}.$

If F' outputs 1 on at least $(1-\frac{l^2}{k-1}\geq \frac{1}{2})$ $\frac{1}{2}$) fraction of all negative graphs, $\frac{1}{2}(k-1)^n \Rightarrow s \text{ is } n^{\Omega(\sqrt{k})}.$ applying lemma 4 gives $s\cdot m^22^{-p}(k-1)^n\geq \frac{1}{2}$ \Box

 (4)

Theorem

For every constant k, the function CLIQUE(n,n-k) can be computed by a monotone formula containing at most $\mathcal{O}(n^2 \text{log} n)$ gates. The number of gates remains polynomial in n as long as $\mathsf{k}=\mathcal{O}(\mathsf{k})$ √ logn); cliques of size $n - k$ are easy to detect when k is small. [Andreev-Jukna 2008]

Proof: We consider the dual of the function CLIQUE(n,n-k) Dual of a boolean function $f(x_1, ..., x_n)$ is the function $f^*(x_1,...x_n) = \neg f(\neg x_1,...,\neg x_n)$ Dual of CLIQUE(n,n-k) accepts a given graph G on n vertices iff G has no independent set with n-k vertices \implies Vertex cover number of G: $\tau(G) > k+1$ This problem can be solved by montonic formula of polynomial size.

 Ω

$\mathsf{NP} \neq \mathsf{P}$

$$
(P \subseteq P/poly = PSIZE) \land (NP \nsubseteq PSIZE) \implies P \neq NP
$$

$NP \nsubseteq BPP$

$$
(BPP \subseteq P/\mathit{poly}) \land (NP \nsubseteq PSIZE) \implies NP \nsubseteq BPP
$$

Open Problem

Whether this results holds for PSIZE; class of languages computable by polynomial size general circuits is still an open problem.

 \leftarrow

Questions?

4 日下

∢ 何 ≯ → ∍ × ≃ 画

Thank You!

4 日下

×. n ⊱ 1 ≃

活