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Monotone functions and circuits

Definition

For x , y ∈ {0, 1}n, we denote x 4 y if every bit that is 1 in x is also 1 in y.
A function f : {0, 1}n → {0, 1} is monotone if f (x) ≤ f (y) for every
x 4 y .

Definition

A boolean circuit is said to be monotone if it only contains AND and OR
gates.

Theorem

Every monotone circuit computes a monotone function, and every
monotone function can be computed by a (sufficiently large) monotone
circuit.
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Motivation

NP 6⊂ P/poly =⇒ P 6= NP

If NP does not have polynomial-size circuits then NP 6⊂ P/poly

The aim is to find problems in NP that are hard for poly-size circuits

Best known lower bounds on non-uniform circuit size for problems in
NP is linear, no super polynomial bounds known for even NEXP

It is believed that the lower bound is exponential

Razborov proved super polynomial monotone circuit bounds for the
NP-complete problem CLIQUE (defined later) [Raz85]

This was improved by Alon & Bopanna to show exponential bound
for CLIQUE [AB87]
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The CLIQUE problem

Clique in a graph

In the mathematical area of graph theory, a clique is a subset of vertices
of an undirected graph such that every two distinct vertices in the clique
are adjacent; that is, its induced subgraph is complete.

The CLIQUE function

The clique function fn = CLIQUE (n, k) has
(n
k

)
variables xij , one for each

potential edge in a graph on n vertices [n] = {1,...,n}; the function
outputs 1 iff the associated graph contains a clique (complete subgraph)
on some k vertices.

Monotonicity of CLIQUE

The clique function is monotone because setting more edges to 1 can only
increase the size of the larges clique. If a graph has a clique of size k, the
clique can’t vanish on adding an edge.
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The CLIQUE problem

Clique is NP-complete

The clique decision problem is NP-complete. It was one of Richard Karp’s
original 21 problems shown NP-complete.

Proof of NP-completeness

The proof shows a many-one reduction from the Boolean satisfiability
problem, which was shown to be NP-complete by Cook-Levin.

Figure: The 3-CNF satisfiability instance reduced to Clique. The green vertices
form a 3-clique and correspond to a satisfying assignment.
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Theorem 1

A weaker problem

Prove that clique decision problem is hard to compute for monotone
circuits. Monotone circuits are weaker than general circuits. Originally
considered with a hope to extend the results to general circuits.

Monotone-circuit lower bound for CLIQUE [Raz85a, And85, AB87]

Theorem : There exists some constant ε > 0 such that for every

k ≤ n1/4, there’s no monotone circuit of size less than n
√
k that computes

CLIQUEn,k ; i.e. exponential monotone circuit lower bound for clique.
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Proof Terminology

Clique Indicators

For every S ⊆ [n], CS denotes the function on {0, 1}(
n
2) that outputs 1 on a

graph G iff the set S is a clique in G and is called the clique indicator of S.
Note : CLIQUEn,k = ∨S⊆[n],|S |=kCS

Y : Distribution of Positive Graphs

It is the distribution of special graphs containing cliques on k vertices.
Pick a set K ⊆ [n] with |K | = k at random. Output a graph that has a
clique on vertices in K, and no other edges. Pr [CLIQUEn,k(Y) = 1] = 1

N : Distribution of Negative Graphs

It is the distribution of special graphs with no clique of size k. Pick a
function c : [n]→ [k − 1] at random. Output a graph that has an edge
between u and v iff c(u) 6= c(v). Pr [CLIQUEn,k(N ) = 0] = 1
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Circuit Approximator

To analyze the circuit, we approximate every small monotone circuit by a
special type of monotone circuits characterized by DNFs.
Note : CS = ∧i 6=j∈Sxij ; is a monomial depending on

(|S |
2

)
variables

(m,l)-approximator

An (m,l)-approximator, is an OR of at most m clique indicators, each of
whose underlying vertex sets have cardinality at most l:

A = ∨rt=1CSt = ∨rt=1 ∧i 6=j∈St xij (r ≤ m, |St | ≤ l) (1)

l ≥ 2 and m ≥ 2 are parameters depending only on values of k and n;
which will be fixed later to complete the proof
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Proof Outline

We start by assuming that there exists a monotone circuit F computing
fn = CLIQUE (n, k), and let F’ be the approximated circuit, that is, an
(m,l)-approximator of the last gate of F. We show that:

Every approximator (including F’) must make a lot of errors, that is,
disagree with fn on many negative an positive graphs.

If size(F) is small, then F’ cannot make too many errors.

This will imply that size(F) must be large.
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Lemma 1

Every approximator either rejects all graphs or wrongly accepts at least a
fraction 1− l2/(k − 1) of all (k − 1)n negative graphs.

Proof : Let A = ∨ri=1CSi be an (m,l)-approximator, and assume that A
accepts at least one graph. Then A ≥ CS1 .

We have
(|S1|

2

)
pairs of vertices in S1 and for each such pair at most

(k − 1)n−1 colorings assign the same color. Thus at most,(|S1|
2

)
(k − 1)n−1 ≤

( l
2

)
(k − 1)n−1 negative graphs can be rejected by CS1

and hence, by the approximator A.
Thus, every approximator (including F’) must make a lot of errors.
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Constructing the approximator F ′

Given a monotone circuit F of size s for the CLIQUEn,k , we will construct
an (m, l) approximator F ′ for F in a ”bottom-up” manner, starting from
the input variables. Approximator for input variable xij will be C{i ,j}.

For an internal node f ∨ g (resp. f ∧ g) we describe the construction of an
(m, l) approximator f t g (resp. f u g) such that F ′ does not make too
many errors, i.e.

Lemma 2

The number of positive graphs wrongly rejected by F ′ is at most
s ·m2

(n−l−1
k−l−1

)
.

Lemma 3

The number of negative graphs wrongly accepted by F ′ is at most
s ·m2l2p(k − 1)n−p.

We will also use sunflower lemma in our construction.
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Sunflower lemma

Theorem

Let Z be a collection of distinct sets each of cardinality at most l . If
|Z| > (p − 1)l l! then there exist p sets Z1, ...,Zp ∈ Z and set Z such that
Zi ∩ Zj = Z for every 1 ≤ i < j ≤ p .

Proof.

By induction. l = 1 : Z = φ works.

Assume the statement is true for l = k − 1. For l = k, assume we have
M⊆ Z, a maximal set of pairwise disjoint sets. If |M| ≥ p, we have
Z = φ. Otherwise, each x ∈ ∪M occurs in some Z ∈ Z (by maximality).
| ∪M| ≤ k(p − 1). Hence some x occurs in more than
(p−1)kk!
(p−1)k = (p− 1)k−1(k − 1)! sets in Z. After removing x from these sets,

each set will be of size at most k − 1 and hence have a sunflower of size p
with k − 1 elements in each petal. Adding x to each petal gives a
sunflower with k elements in each petal.
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Lower bound for no sunflower

Theorem

There is a Z, a collection of size (p − 1)l of distinct sets each of
cardinality at most l , with no sunflower with p petals.

Proof.

Z = {{(i , f (i))|i ∈ [l ]}|f : [l ]→ [p − 1]} Consider M⊆ Z where
|M| = p. Let (i , j) be an element not present in all sets in M. There are
p − 1 elements of the form (i , ∗). So there are M,M ′ ∈M such that
(i , j) ∈ M ∩M ′ for some j , but (i , j) /∈ ∩M⇒M is not a sunflower.
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f t g

If f and g are (m, l)-functions, such that

f =
m∨
i=1

CSi , g =
m∨
j=1

CTj

h = f ∨ g has at most 2m clauses, and hence may not be a (m, l)
function. So we repeatedly replace groups of clauses CZ1 ...CZp with a
stronger clause CZ using sunflower lemma, until the number of clauses
left is at most m. We call this procedure plucking. We define f t g as the
function obtained after plucking. To be able to apply sunflower lemma, we
set m := l!(p − 1)l .
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f u g

If f and g are (m, l)-functions, such that

f =
m∨
i=1

CSi , g =
m∨
j=1

CTj

we define

h =
m∨
i=1

m∨
j=1

CSi∪Tj

which has at most m2 clauses. We remove clauses CZ with |Z | > l and
reduce the number of clauses to at most m by repeatedly applying the
sunflower lemma as before (plucking). We define f u g as the function
obtained by this procedure. Note that

f ∧ g =
m∨
i=1

m∨
j=1

CSi ∧ CTj
6= h
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Lemma 2

We defined f t g by replacing some clauses from f ∨ g with a weaker
clause. So f t g does not wrongly reject positive graphs. Thus plucking
does not introduce false negatives.

To approximate f ∧ g , we first replace CSi ∧ CTj
with CSi∪Tj

, which
behave identically on positive graphs. Hence this step does not introduce
false negatives. Then we remove clauses with |Si ∪ Tj | > l . Because of
this, we wrongly reject positive graphs in which Si ∪ Tj is a clique - there

are at most
(n−l−1
k−l−1

)
such graphs. Since we remove at most m2 clauses, we

wrongly reject at most m2
(n−l−1
k−l−1

)
positive graphs. After this, we do

plucking, which does not introduce any false negatives. Thus
approximating f ∧ g using f u g introduces at most m2

(n−l−1
k−l−1

)
false

negatives.

Since there are at most s AND gates, F ′ wrongly rejects at most
s ·m2

(n−l−1
k−l−1

)
positive graphs.
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Lemma 3

# Wrongly accepted negative graphs when approximating f ∨ g using
f t g? We will show that each plucking Z1, ...,Zp → Z increases this
number by at most l2p(k − 1)n−p and we will do at most 2m such
pluckings in one approximation step ⇒ at most 2ml2p(k − 1)n−p wrongly
accepted negative graphs OR gate.

Z must be a clique and none of Zi s is a clique. We defined G ∈ N using a
random function c : [n]→ [k − 1] with an edge between u and v whenever
c(u) 6= c(v). So we need c to be one-to-one on Z (event B) without
being one to one on any Zi (event Ai ). Pr [Ai |B] = probability of collision

in Zi \ Z ≤ l2

k−1 . Since Zi \ Z are disjoint,

Pr [A1∧ ...∧Ap∧B] ≤ Pr [A1∧ ...∧Ap|B] =
∏p

i=1 Pr [Ai |B] ≤ l2p(k−1)−p.
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Lemma 3 (contd.)

For calculating the approximator f u g , replacing CSi ∧ CTj
with CSi∪Tj

or
removing clauses with |Si ∪ Tj | > l does not introduce any false positives.
Each plucking introduces at most l2p(k − 1)n−p false positives, with at
most m2 pluckings. Thus approximating AND gates introduces at most
m2l2p(k − 1)n−p false positives on negative graphs.

Thus each gate introduces at most m2l2p(k − 1)n−p false positives on
negative graphs. Hence F ′ wrongly accepts at most s ·m2l2p(k − 1)n−p

negative graphs.
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Main Theorem

Theorem

For 3 ≤ k ≤ n1/4, the monotone circuit complexity of CLIQUE (n, k) is

nΩ(
√
k)

Proof.

Let F be a monotone circuit of size s deciding CLIQUE (n, k). Construct

F ′ as described using l = b
√
k−1
2 c, p = Θ(

√
k log n) and

m = l!(p − 1)l ≤ (pl)l . By lemma 1, there are 2 cases.

If F ′ is identically 0, applying lemma 2 gives s ·m2
(n−l−1
k−l−1

)
≥
(n
k

)
⇒ s is

nΩ(
√
k). (Because

(n
k

)
/
(n−x
k−x
)
≥ (n/k)x).

If F ′ outputs 1 on at least (1− l2

k−1 ≥
1
2 ) fraction of all negative graphs,

applying lemma 4 gives s ·m22−p(k − 1)n ≥ 1
2 (k − 1)n ⇒ s is nΩ(

√
k).
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Very large size cliques are easy to detect

Theorem

For every constant k, the function CLIQUE(n,n-k) can be computed by a
monotone formula containing at most O(n2logn) gates. The number of
gates remains polynomial in n as long as k = O(

√
logn); cliques of size

n − k are easy to detect when k is small. [Andreev-Jukna 2008]

Proof : We consider the dual of the function CLIQUE(n,n-k)
Dual of a boolean function f (x1, ..., xn) is the function
f ∗(x1, ...xn) = ¬f (¬x1, ...,¬xn)
Dual of CLIQUE(n,n-k) accepts a given graph G on n vertices iff G has no
independent set with n-k vertices =⇒
Vertex cover number of G: τ(G ) ≥ k + 1
This problem can be solved by montonic formula of polynomial size.
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Implications & Further Work

NP 6= P

(P ⊆ P/poly = PSIZE ) ∧ (NP * PSIZE ) =⇒ P 6= NP

NP * BPP

(BPP ⊆ P/poly) ∧ (NP * PSIZE ) =⇒ NP * BPP

Open Problem

Whether this results holds for PSIZE; class of languages computable by
polynomial size general circuits is still an open problem.
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Questions?
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Thank You!
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