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Recap

1. Places P
2. Transtions T
3. T × P ≡ Pre : T → 2P

4. P × T ≡ Post : T → 2P

5. Marking M : P → N
6. Firing Condition ∀p ∈ Pre(t),M(p) > 0
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Example

t1

t2

t3

t4

Figure 1: Mutual Exclusion

Initial Marking M0 = (a, b, d)
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Example

t1

t2

[0,1)

t3

t4

[0,1)

Figure 1: Mutual Exclusion

Initial Marking M0 = ((a, 0), (b, 0), (d , 0))
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Example

t1 [2,3)

t2

[0,1) (1,2)

t3

[1,2]

t4

[0,1)[2]

Figure 1: Mutual Exclusion

Initial Marking M0 = ((a, 0), (b, 0), (d , 0), (d , 0))
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Timed Petri Net

1. Add time to tokens

2. Label each arc by intervals, Multiple intervals possible
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Formal Definition

A timed Petri net (TPN) N = P ,T ,Pre,Post, λ) where:
I P is a finite set of places,
I T is a finite set of transitions with P ∩ T = φ

I Pre,Post : T × P → (I⊕) 1 where I is set of intervals
(closed integral bounds, right-unbounded)

I λ : T → Σ ∪ {ε} is a labelling function

1The operation A⊕ is called Bag. Bag : A → N
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Semantics

Marking
Marking M : P → (R⊕

≥0)

Alternatively we can also write it as M ∈ (P × R≥0)
⊕2

We say M ≤ M ′ ⇐⇒ ∀q ∈ P × R≥0,M(q) ≤ M ′(q)

2We will abuse the notations indicating M((p,x))=M(p)(x)
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Transitions

Delay Transitions
For δ ∈ R≥0 and M = ((p1, x1), (p2, x2), . . . , (pi , xi))

Mz δ−→ M ′ ⇐⇒ M ′ =
((p1, x1 + δ), (p2, x2 + δ), . . . , (pi , xi + δ))
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Transitions

Discrete Transition
For t ∈ T ,M λ(t)−−→ M ′

I Condition (Informal): Consider 2 minimal bags B1,B2

I B1 ≤ M ie. every (token,timestamp) in B1 must be in M
I B1 |= Pre(t) Each (token,timestamp) in B1 must satisfy

a distinct interval in the Pre(t)
I B2 denotes the new tokens after transition.

B2 |= Post(t)3

I Thus, M ′ = M − B1 + B2

3The time of the new token after the transition is fired is selected
non-deterministically
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Example

t1

[0,3)

[2,3)[2]

t2

[0:1) (1,2)[0]

t3

(3,4)

[1,2]

t4

[0:1)

[3]

[2]

Figure 2: Mutual Exclusion

Marking M0 = ((a, 0), (b, 0), (d , 0), (d , 0))
M0

2−→ ((a, 2), (b, 2), (d , 2), (d , 2)) t1−→ ((b, 2), (c, 0))
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Semantics (contd...)

Firing Sequence
Thus it will be (t1, τ1), (t2, τ2) . . .
The transition sequence which ouccurs is:
Min

τ1−→ M1
t1−→ M2

τ2−τ1−−−→ M2
t2−→ . . .
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Coverability

I Can we use Karp-Miller trees on markings?

I No! Because infinite branching factor
I We need a compact representation for a set of markings
I Existential zones
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Existential zones

An existential zone Z is a triple (m, P̄ ,D), where
I m ∈ N denoted the minimum number of tokens

I P̄ : m+ → P called a placing, which maps each token
to a place

I D : m∗ × m∗ → N ∪ {∞} called a difference bound
matrix, defines restriction on the ages of the tokens

1n+ = {1, 2, ..., n}
2n∗ = {0, 1, ..., n}
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Relating existential zones with markings

I Marking M = ((p1, x1), ..., (pn, xn))

I Injection h : m+ → n+ (called a witness)
I M satisfies Z with respect to h, written M, h � Z , if the

following conditions are satisfied.

I P̄(i) = ph(i), for each i : 1 ≤ i ≤ m
I xh(j) − xh(i) ≤ D(j, i), for each i , j ∈ m+ with i 6= j
I xh(i) ≤ D(i , 0) and −D(0, i) ≤ xh(i), for each i ∈ m+

I M satisfies Z, written M � Z , if M, h � Z for some h.
I JZK = {M;M � Z}
I JZK is upward closed
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Existential zones

(
2, P̄ = (p1, p2),

− 0 1 2
0 − −2 −3
1 4 − 0
2 5 2 −

)
represents all markings

M such that:

I M has a token at p1 with age x1 in [2, 4]
I M has a token at p1 with age x2 in [3, 5]
I x1 − x2 ≤ 0
I x2 − x1 ≤ 2
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Lemma 1

For an existential zone Z and a marking M, it is decidable
whether M � Z
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Normal and consistent Existential Zones

I An existential zone Z is said to be normal if for each
i , j, k ∈ m∗, we have D(j, i) ≤ D(j, k) + D(k, i).

I An existential zone Z is said to be consistent if
JZK 6= Φ.
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Entailment

Given zones Z1 and Z2, we say that Z1 is entailed by Z2,
written Z1 � Z2, if JZ2K ⊆ JZ1K.

I � is a quasi order
I Is � a well quasi order?
I Yes it is!
I To prove this we prove that it is a better quasi order

(bqo).



Timed Petri Nets
and BQOs

Parosh Aziz
Abdulla and

Aletta Nyl´en

Motivation
Example

Timed Petri Nets
Semantics

Existential zones

Better quasi orders

Coverability

Complexity
Analysis
Definitions

Computation

Conclusion

18/40

Entailment

Given zones Z1 and Z2, we say that Z1 is entailed by Z2,
written Z1 � Z2, if JZ2K ⊆ JZ1K.

I � is a quasi order

I Is � a well quasi order?
I Yes it is!
I To prove this we prove that it is a better quasi order

(bqo).



Timed Petri Nets
and BQOs

Parosh Aziz
Abdulla and

Aletta Nyl´en

Motivation
Example

Timed Petri Nets
Semantics

Existential zones

Better quasi orders

Coverability

Complexity
Analysis
Definitions

Computation

Conclusion

18/40

Entailment

Given zones Z1 and Z2, we say that Z1 is entailed by Z2,
written Z1 � Z2, if JZ2K ⊆ JZ1K.

I � is a quasi order
I Is � a well quasi order?

I Yes it is!
I To prove this we prove that it is a better quasi order

(bqo).



Timed Petri Nets
and BQOs

Parosh Aziz
Abdulla and

Aletta Nyl´en

Motivation
Example

Timed Petri Nets
Semantics

Existential zones

Better quasi orders

Coverability

Complexity
Analysis
Definitions

Computation

Conclusion

18/40

Entailment

Given zones Z1 and Z2, we say that Z1 is entailed by Z2,
written Z1 � Z2, if JZ2K ⊆ JZ1K.

I � is a quasi order
I Is � a well quasi order?
I Yes it is!

I To prove this we prove that it is a better quasi order
(bqo).



Timed Petri Nets
and BQOs

Parosh Aziz
Abdulla and

Aletta Nyl´en

Motivation
Example

Timed Petri Nets
Semantics

Existential zones

Better quasi orders

Coverability

Complexity
Analysis
Definitions

Computation

Conclusion

18/40

Entailment

Given zones Z1 and Z2, we say that Z1 is entailed by Z2,
written Z1 � Z2, if JZ2K ⊆ JZ1K.

I � is a quasi order
I Is � a well quasi order?
I Yes it is!
I To prove this we prove that it is a better quasi order

(bqo).



Timed Petri Nets
and BQOs

Parosh Aziz
Abdulla and

Aletta Nyl´en

Motivation
Example

Timed Petri Nets
Semantics

Existential zones

Better quasi orders

Coverability

Complexity
Analysis
Definitions

Computation

Conclusion

19/40

Better quasi orders

Barrier
I β ⊂ N<ω is called a barrier if

I There are no s1, s2 ∈ β such that s1 @ s2
I For each s2 ∈ Nω

there is s1 ∈ β with s1 � s2

Examples

I {(a, b)|b > a}
I {(a, b, c)|c > b > a}
I {(a, b)|b > a > 1} ∪ {1}

1N<ω is the set of all finite strictly increasing sequences over N
2s1 @ s2 : s1 is a proper subsequence of s2
3Nω is the set of all infinite strictly increasing sequences over N
4s1 � s2 : s1 is a proper prefix of s2
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Better quasi orders

I Definition A-pattern

I A mapping f : β → A where β is a barrier and (A,�) is
a wqo

I Definition Good A-pattern

I There are s1, s2 such that tail(s1) � s2 and
f (s1) � f (s2)

1tail(s1) : sequence after deleting first element of s1
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Better quasi orders

Definition Better quasi orders
I (A,�) is a better quasi order if every A-pattern is good.
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Better quasi orders

Properties of Better quasi orders

I Each bqo is wqo.
I If A is finite, then (A,=) is bqo.
I If (A,�) is bqo, then (A,�) is bqo.
I If (A,�) is bqo, then (AB ,�B) is bqo.
I If (A,�) is bqo, then (P(A),v) is bqo.
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Better quasi orders

I But what’s the intuition?
I How is it different from wqo?
I Example of wqo that’s not a bqo: (X ,�) where

I X = (a, b)|a, b ∈ N; b > a
I (m, n) � (m′, n′) iff (m = m′ ∧ n′ ≥ n) ∨ m′ > m
I (X ,�) is a wqo
I But (P(X),v) is not a wqo
I Infinite antichain: Xi = {(i , j)|j > i}

1X v Y ⇐⇒ ∀x ∈ X∃y ∈ Y : x � y
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Existential region

An existential region is a:

I A list of bags (B0,B1, ...,Bn+1)

I where each Bi is a bag over P × N
I Tokens in the same bag have the same fractional part
I Tokens in B0 have fractional part zero
I Fractional part in Bi+1 > Fractional part in Bi
I Bn+1 contains tokens with age larger than m

1m is the largest constant appearing in the intervals
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(Z ,�) is a bqo

I (P ,=) is a bqo
I (N,=) is a bqo
I (P × N,=) is bqo
I ((P × N)B ,=B) is bqo
I Existential regions (R = ((P × N)B)∗, (=B)∗) is bqo
I Set of upsets on markings (JZK =

⋃
R,⊆) is a bqo

I (JZK,⊆) is bqo
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Computing Predecessors

I PreJZK is the set of markings from which a marking in
JZK is reachable in a single step

I PreJZK =
⋃

finiteJZiK where Zi are existential zones
I Pre = PreD ∪ Preδ where

I PreD =
⋃

t∈T Pret corresponds to firing transitions
backward

I Preδ corresponds to running time backwards
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Computing Predecessors

Computing Preδ

I Intuitively, remove the minimum age requirements
I For Z = (m, P̄ ,D), Preδ(Z) = Z ′ = (m, P̄ ,D ′) where

I D ′(0, i) = 0
I D ′(j, i) = D(j, i) if j 6= 0
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Computing Predecessors

t1

[0,3)

[2,3)[2]

t2

[0:1) (1,2)[0]

t3

(3,4)

[1,2]

t4

[0:1)

[3]

[2]

Figure 3: Mutual Exclusion

I Example Z =4, P̄

− 0 1 2 3 4
0 − −1 −1 −1 −1
1 1 − 0 0 0
2 1 0 − 0 0
3 1 0 0 − 0
4 1 0 0 0 −


y4, P̄

− 0 1 2 3 4
0 − 0 0 0 0
1 1 − 0 0 0
2 1 0 − 0 0
3 1 0 0 − 0
4 1 0 0 0 −





Timed Petri Nets
and BQOs

Parosh Aziz
Abdulla and

Aletta Nyl´en

Motivation
Example

Timed Petri Nets
Semantics

Existential zones

Better quasi orders

Coverability

Complexity
Analysis
Definitions

Computation

Conclusion

29/40

Computing Predecessors

Computing Pret
I Conjunction Z ⊗ (I, i)

I Restricts age of token i in I
I Example:-

− 0 1 2 3 4
0 − 0 0 0 0
1 2 − 0 0 0
2 2 0 − 0 0
3 2 0 0 − 0
4 2 0 0 0 −

⊗ ([1 : 3], 1) →

− 0 1 2 3 4
0 − −1 0 0 0
1 2 − 0 0 0
2 2 0 − 0 0
3 2 0 0 − 0
4 2 0 0 0 −
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Computing Predecessors

Computing Pret
I Addition Z ⊕ (p, I)

I Adds a token to p with age in I

I Example:-

4, (A, B, D, D),

− 0 1 2 3 4
0 − 0 0 0 0
1 2 − 0 0 0
2 2 0 − 0 0
3 2 0 0 − 0
4 2 0 0 0 −

 ⊕ (A, [1 : 2]) →


5, (A, B, D, D, A),

− 0 1 2 3 4 5
0 − 0 0 0 0 −1
1 2 − 0 0 0 ∞
2 2 0 − 0 0 ∞
3 2 0 0 − 0 ∞
4 2 0 0 0 − ∞
5 2 ∞ ∞ ∞ ∞ −
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Computing Predecessors

Computing Pret
I Abstraction Z \ i

I Removes token i

I Example:-

4, (A, B, D, D),

− 0 1 2 3 4
0 − 4 3 2 1
1 4 − 0 0 0
2 3 0 − 0 0
3 2 0 0 - 0
4 1 0 0 0 −

 \ 3 →

3, (A, B, D),

− 0 1 2 3
0 − 4 3 1
1 4 − 0 0
2 3 0 − 0
3 1 0 0 −
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Computing Predecessors

Computing Pret
I Abstraction Z \ i
I Removes token i

I Example:-

4, (A, B, D, D),

− 0 1 2 3 4
0 − 4 3 2 1
1 4 − 0 0 0
2 3 0 − 0 0
3 2 0 0 - 0
4 1 0 0 0 −

 \ 3 →

3, (A, B, D),

− 0 1 2 3
0 − 4 3 1
1 4 − 0 0
2 3 0 − 0
3 1 0 0 −
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Computing Predecessors

Computing Pret

I In(t) = {(p1, I1, (p2, I2), ..., (pk , Ik)}
I Out(t) = {(q1,J1, (q2,J2), ..., (qk ,Jl)}
I Pret(Z) =

I ∀Z ′ such that
I ∃ partial injection m+ → l+ with domain {i1, i2, ..., in}
I ∃ existential zone Z1
I Z ⊗ (Jh(i1 , i1)⊗ (Jh(i2 , i2)...⊗ (Jh(in , in) is consistent
I Z1 = Z \ i1 \ i2... \ in
I Z ′ = Z1 ⊕ (p1, I1)⊕ (p2, I2)...⊕ (pk , Ik)
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Coverability and Termination

I Thus ({Z},�) is a well quasi order
I Pre is effectively computable
I Hence we can use backward coverability algorithm
I What about termination?
I For termination, we need effective Post computability
I Post computability can be proved similarly
I Hence termination is decidable
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Fast Growing Hierarchy

Recap
Gregorczyk Hierarchy: fk+1(n) = fkn(n)
fω(n) = fn(n)4

Fast Growing Hierarchy
We construct the hierarchy as follows:

I ω + ω = ω.2, Similarly,ω + ω.(n − 1) = ω.n
I ω.ω = ω2. Applying finite times: ω.ωn−1 = ωn

I ωω = ω.ω.ω. . . .

I ωωω...

and so on

4ω is like infinity(smallest supremum over natural numbers)
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Length Function Theorem

Let g be a smooth control function eventually bounded by a
function in Fγ , and let A be an exponential nwqo with
maximal order type < ωβ+1. Then L(A,g) is bounded by a
function in

I Fβ if γ < ω (e.g. if g is primitive-recursive) and β ≥ ω,
I Fγ+β if γ ≥ 2, β < ω
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Maximal Order Type

Definition
Longest linearization of a bad sequence isomorphic to an
ordering

I o(Γk) = k
I o(Γ∗0) = ω0

I o(Γ∗k+1) = ωωk

I o(A ⊕ B) = o(A)⊕ o(B)

I o(A ⊗ B) = o(A)⊗ o(B)



Timed Petri Nets
and BQOs

Parosh Aziz
Abdulla and

Aletta Nyl´en

Motivation
Example

Timed Petri Nets
Semantics

Existential zones

Better quasi orders

Coverability

Complexity
Analysis
Definitions

Computation

Conclusion

37/40

Computing Complexity:LA,g

I o(P) = |p|
I o(N≤m) = m =⇒ o(P × [m]) = |p|m
I o(Bag(P × [m])) = ω ∗ (|p|m)

I o((Bag(P × [m]))∗) = ωωω∗(|p|m)

I o(∪(Bag(P × [m]))∗) = ωωω∗(|p|m)
.ω

I Thus o(Z) = ωωω|p|m
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Computing Complexity: Predecessor

I Calculation of Predecessor: For time lapse move, the
Pre calculation is just updating the markings which can
be done in F1

I For discrete transition: Even for that, the steps required
will be the number of tokens which is still in F1
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Final Complexity

I We see that the complexity of the algorithm is thus
dependent mainly on the maximum length of the bad
sequence.

I By Length-Function Theorem, we get the complexity is
F
ωω|p|m

I Generalising we get, the complexity as Fωωω .
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Conclusion

I Existential zones of timed petri Nets form BQO
I BQOs are WQOs thus timed petri nets are WSTS over

existential zones as the states and transition as that of
the timed petri nets

I Coverability and Termination are Decidable
I Complexity of the Coverability and Termination

algorithms is Fωωω
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