See discussions, stats, and author profiles for this publication at: [https://www.researchgate.net/publication/333210907](https://www.researchgate.net/publication/333210907_Recursive_Timed_Automata_for_CS_713_-Special_Topics_in_Automata_and_Logics?enrichId=rgreq-2238b466f7a31ccb3abe8fa135e6fd61-XXX&enrichSource=Y292ZXJQYWdlOzMzMzIxMDkwNztBUzo3NjA2MDEzMzY4NzcwNTZAMTU1ODM1Mjg5ODA5OQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf)

[Recursive Timed Automata \(for CS 713 -Special Topics in Automata and Logics\)](https://www.researchgate.net/publication/333210907_Recursive_Timed_Automata_for_CS_713_-Special_Topics_in_Automata_and_Logics?enrichId=rgreq-2238b466f7a31ccb3abe8fa135e6fd61-XXX&enrichSource=Y292ZXJQYWdlOzMzMzIxMDkwNztBUzo3NjA2MDEzMzY4NzcwNTZAMTU1ODM1Mjg5ODA5OQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf)

Presentation · April 2019

0

1 author:

Some of the authors of this publication are also working on these related projects:

Inference in Probabilistic Programming Languages [View project](https://www.researchgate.net/project/Inference-in-Probabilistic-Programming-Languages?enrichId=rgreq-2238b466f7a31ccb3abe8fa135e6fd61-XXX&enrichSource=Y292ZXJQYWdlOzMzMzIxMDkwNztBUzo3NjA2MDEzMzY4NzcwNTZAMTU1ODM1Mjg5ODA5OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf)

Recursive Timed Automata CS 713 - Special Topics in Automata and Logics

Ashutosh Trivedi and Dominik Wojtczak

May 20, 2019

Ashutosh Trivedi and Dominik Wojtczak [Recursive Timed Automata](#page-32-0) May 20, 2019 1/32

 \leftarrow

[Recursive State Machines](#page-3-0)

- [Labelled Transition Systems](#page-3-0)
- [Games on Labelled Transition Systems](#page-5-0)
- [Recursive State Machines](#page-7-0)
- [Semantics of RSM](#page-10-0)

[Recursive Timed Automata](#page-13-0)

- **•** [Definition](#page-13-0)
- [RTA semantics](#page-16-0)

(3) [Undecidability of RTA Termination with](#page-18-0) ≥ 3 clocks

- **[Two counter Minsky machines](#page-19-0)**
- \bullet Gadgets DB, HF, P30, P20. HALT $^{\mathcal{A}}$

- [Glitch-free RTA](#page-26-0)
- **•** [Region Equivalence](#page-28-0)

[Recursive State Machines](#page-3-0)

[Labelled Transition Systems](#page-3-0)

- **[Games on Labelled Transition Systems](#page-5-0)**
- **[Recursive State Machines](#page-7-0)**
- [Semantics of RSM](#page-10-0)

[Recursive Timed Automata](#page-13-0)

- **•** [Definition](#page-13-0)
- [RTA semantics](#page-16-0)

[Undecidability of RTA Termination with](#page-18-0) \geq 3 clocks

- **[Two counter Minsky machines](#page-19-0)**
- \bullet Gadgets DB, HF, P30, P20, HALT A

- [Glitch-free RTA](#page-26-0)
- **[Region Equivalence](#page-28-0)**
- A labelled transition system (LTS) is a tuple $\mathcal{L} = (S, A, X)$, where
	- \bullet S is the set of states.
	- A is the set of actions, and
	- \bullet $X : S \times A \rightarrow S$ is the transition function.

[Recursive State Machines](#page-3-0)

- **[Labelled Transition Systems](#page-3-0)**
- [Games on Labelled Transition Systems](#page-5-0)
- **[Recursive State Machines](#page-7-0)**
- [Semantics of RSM](#page-10-0)

[Recursive Timed Automata](#page-13-0)

- **•** [Definition](#page-13-0)
- [RTA semantics](#page-16-0)

[Undecidability of RTA Termination with](#page-18-0) \geq 3 clocks

- **[Two counter Minsky machines](#page-19-0)**
- \bullet Gadgets DB, HF, P30, P20, HALT A

- [Glitch-free RTA](#page-26-0)
- **[Region Equivalence](#page-28-0)**

A game arena G is a tuple (L, S_{Ach}, S_{Tor}) , where

•
$$
\mathcal{L} = (S, A, X)
$$
 is an LTS,

- \bullet $S_{\text{Ach}} \subset S$ is the set of states controlled by player Achilles, and
- \bullet S T_{or} ⊂ S is the set of states controlled by player Tortoise

A strategy of player Achilles is a partial function α : FRuns $\mathcal{L} \to A$ such that for a run $r \in FRuns^{\mathcal{L}}$ we have that $\alpha(r)$ is defined if last $(r) \in S_{\text{Ach}}$, and $\alpha(r) \in A(\text{last}(r))$ for every such r. A strategy of player Tortoise is defined analogously. For an initial state s and a set of final states F , the value Val $_{\mathsf{F}}^{\mathcal{L}}(s)$ of the reachability game is defined the number of transitions that Tortoise can ensure before the game visits a state in F irrespective of the strategy of Achilles.

Achilles wins the reachability game if $\mathsf{Val}^\mathsf{C}_\mathsf{F}(s) < \infty$

[Recursive State Machines](#page-3-0)

- **[Labelled Transition Systems](#page-3-0)**
- **[Games on Labelled Transition Systems](#page-5-0)**
- [Recursive State Machines](#page-7-0)
- [Semantics of RSM](#page-10-0)

[Recursive Timed Automata](#page-13-0)

- **•** [Definition](#page-13-0)
- [RTA semantics](#page-16-0)

[Undecidability of RTA Termination with](#page-18-0) \geq 3 clocks

- **[Two counter Minsky machines](#page-19-0)**
- \bullet Gadgets DB, HF, P30, P20, HALT A

- [Glitch-free RTA](#page-26-0)
- **[Region Equivalence](#page-28-0)**

Recursive State Machines

A recursive state machine $M = (M_1, M_2, \ldots, M_k)$ is a tuple of components, where for each $1 \le i \le k$ component $\mathcal{M}_i = (N_i, En_i, Ex_i, B_i, Y_i, A_i, X_i)$ consists of:

- a finite set N_i of nodes, including the set En_i entry nodes and the set Ex_i of exit nodes.
- a finite set B_i of boxes.
- boxes-to-components mapping $\,\mathsf{Y}_i: B_i \rightarrow \{1,2,\ldots,k\}\,$ that assigns every box to a component. To each box $b \in B_i$ we associate a set of call ports Call(b), and a set of return ports Ret(b) :

$$
\text{Call}(b) = \left\{ (b, en) : \text{en} \in \text{En}_{Y_i(b)} \right\}
$$

$$
\text{Ret}(b) = \left\{ (b, ex) : \text{ex} \in \text{Ex}_{Y_i(b)} \right\}
$$

 $Q_i = N_i \cup Call_i \cup Ret_i$

- a finite set A_i of actions.
- a transition function $X_i: Q_i \times A_i \rightarrow Q_i$ with a condition that call ports and exit nodes do not have any outg[oin](#page-7-0)[g t](#page-9-0)[r](#page-7-0)[an](#page-8-0)[si](#page-9-0)[t](#page-6-0)[io](#page-7-0)[n](#page-9-0)[s](#page-10-0)[.](#page-2-0)

Example

$$
\mathcal{M}_i = (N_i, En_i, Ex_i, B_i, Y_i, A_i, X_i)
$$

 299

Ashutosh Trivedi and Dominik Wojtczak [Recursive Timed Automata](#page-1-0) May 20, 2019 9/32

 \leftarrow \Box →●● \rightarrow \equiv

× ×

 \rightarrow

Þ

重

[Recursive State Machines](#page-3-0)

- **[Labelled Transition Systems](#page-3-0)**
- **[Games on Labelled Transition Systems](#page-5-0)**
- **[Recursive State Machines](#page-7-0)**
- [Semantics of RSM](#page-10-0)

[Recursive Timed Automata](#page-13-0)

- **•** [Definition](#page-13-0)
- [RTA semantics](#page-16-0)

[Undecidability of RTA Termination with](#page-18-0) \geq 3 clocks

- **[Two counter Minsky machines](#page-19-0)**
- \bullet Gadgets DB, HF, P30, P20, HALT A

- [Glitch-free RTA](#page-26-0)
- **[Region Equivalence](#page-28-0)**

Let $\mathcal{M} = (\mathcal{M}_1, \mathcal{M}_2, \dots, \mathcal{M}_k)$ be an RSM where the component \mathcal{M}_i is $(N_i, En_i, Ex_i, B_i, Y_i, A_i, X_i)$. The semantics of ${\cal M}$ is the countable labelled transition system $[\mathcal{M}] = (S_{\mathcal{M}}, A_{\mathcal{M}}, X_{\mathcal{M}})$ where:

- $\mathcal{S}_\mathcal{M} \subseteq B^* \times Q$ is the set of states;
- $A_{\mathcal{M}} = \cup_{i=1}^k A_i$ is the set of actions;
- \bullet X_M : $S_M \times A_M \rightarrow S_M$ is the transition function such that for $\mathcal{s} = (\langle\kappa\rangle, q) \in \mathcal{S}_\mathcal{M}$ and $a \in A_\mathcal{M}$, we have that $\mathcal{s}' = \mathcal{X}_\mathcal{M}(\mathcal{s}, a)$ if and only if one of the following holds:
	- the vertex q is a call port, i.e. $q = (b, en) \in$ Call, and $s' = (\langle \kappa, b \rangle, en)$;
	- the vertex q is an exit node, i.e. $q = ex \in Ex$ and $s' = (\langle \kappa' \rangle, (b, ex))$ where $(b, ex) \in \text{Ret}(b)$ and $\kappa = (\kappa', b)$;
	- the vertex q is any other kind of vertex, and $s' = (\langle \kappa \rangle, q')$ and $q' \in X(q, a)$.

Games on RSM: $([\mathcal{M}],[Q_{\text{Ach}}]_M, [\mathbb{Q}_{\text{Tor}}]_M)$

画

メロメ メ都 メメ きょくきょ

Table 1. Complexity results for reachability objective for RSMs

4 0 8

[Recursive State Machines](#page-3-0)

- **[Labelled Transition Systems](#page-3-0)**
- **[Games on Labelled Transition Systems](#page-5-0)**
- **[Recursive State Machines](#page-7-0)**
- [Semantics of RSM](#page-10-0)

[Recursive Timed Automata](#page-13-0)

- **•** [Definition](#page-13-0)
- [RTA semantics](#page-16-0)

[Undecidability of RTA Termination with](#page-18-0) \geq 3 clocks

- **[Two counter Minsky machines](#page-19-0)**
- \bullet Gadgets DB, HF, P30, P20, HALT A

- [Glitch-free RTA](#page-26-0)
- **[Region Equivalence](#page-28-0)**

A recursive timed automaton $\mathcal{T} = (\mathcal{C}, (\mathcal{T}_1, \mathcal{T}_2, \ldots, \mathcal{T}_k))$ is a pair made of a set of clocks C and a collection of components $(\mathcal{T}_1, \mathcal{T}_2, \ldots, \mathcal{T}_k)$. Each component $\mathcal{T}_i = (N_i, En_i, Ex_i, B_i, Y_i, A_i, X_i, P_i, \ln v_i, E_i, \rho_i)$ consists of:

- N_i , En_i , Ex_i , B_i , Y_i , A_i , X_i as in RSM
- pass-by-value mapping P_i : $B_i \rightarrow 2^\mathsf{C}$ that assigns every box the set of clocks that that are passed by value to the component mapped to the box; (The rest of the clocks are assumed to be passed by reference.)
- the invariant condition $\mathit{Inv}_i:Q_i\rightarrow\mathcal{Z}$
- the action enabledness function $E_i: Q_i \times \mathcal{A}_i \rightarrow \mathcal{Z}$; and
- the clock reset function $\rho_i: A_i \rightarrow 2^\mathcal{C}.$

Fig. 2. Example recursive timed automaton

 $\mathcal{T}_i = (N_i, En_i, Ex_i, B_i, Y_i, A_i, X_i, P_i, \ln v_i, E_i, \rho_i)$

Ashutosh Trivedi and Dominik Wojtczak [Recursive Timed Automata](#page-1-0) May 20, 2019 15 / 32

4 0 8

Þ

 Ω

[Recursive State Machines](#page-3-0)

- **[Labelled Transition Systems](#page-3-0)**
- **[Games on Labelled Transition Systems](#page-5-0)**
- **[Recursive State Machines](#page-7-0)**
- [Semantics of RSM](#page-10-0)

[Recursive Timed Automata](#page-13-0)

- **•** [Definition](#page-13-0)
- [RTA semantics](#page-16-0)

[Undecidability of RTA Termination with](#page-18-0) \geq 3 clocks

- **[Two counter Minsky machines](#page-19-0)**
- \bullet Gadgets DB, HF, P30, P20, HALT A

- [Glitch-free RTA](#page-26-0)
- **[Region Equivalence](#page-28-0)**

RTA semantics

Let $\mathcal{T} = (\mathcal{C}, (\mathcal{T}_1, \mathcal{T}_2, \ldots, \mathcal{T}_k))$ be an RTA where each component is of the form $\mathcal{T}_i=(N_i, En_i, Ex_i, B_i, Y_i, A_i, X_i, P_i, Inv_i, E_i, \rho_i)$. The semantics of \mathcal{T}_i is a labelled transition system $[\mathcal{T}] = (S_{\mathcal{T}}, A_{\mathcal{T}}, X_{\mathcal{T}})$ where:

- $\mathcal{S}_{\mathcal{T}} \subseteq (\mathcal{B} \times \mathcal{V})^* \times \mathcal{Q} \times \mathcal{V},$ the set of states, is such that $({\langle \kappa \rangle}, q, \nu) \in S_T$ if $\nu \in \ln \nu(q)$
- $A_{\tau} = \mathbb{R}_{\oplus} \times A$ is the set of timed actions;
- $\bullet X_{\tau}: S_{\tau} \times A_{\tau} \rightarrow S_{\tau}$ is the transition function such that for $({\langle}\kappa{\rangle}, q, \nu) \in S_T$ and $(t, a) \in A_T$, we have $(\langle\kappa'\rangle\,,q',\nu')=X_{\mathcal{T}}((\langle\kappa\rangle,q,\nu),(t,a))$ if and only if the following condition holds:
	- if the vertex q is a call port, i.e. $q = (b, en) \in$ Call then $t = 0$, the context $\langle \kappa' \rangle = \langle \kappa, (b, \nu) \rangle,$ $\mathsf{q}' = \mathsf{e} \mathsf{n},$ and $\nu' = \nu$
	- if the vertex q is an exit node, i.e. $q = ex \in Ex, \langle \kappa \rangle = \langle \kappa'',(b, \nu'') \rangle$ and let $(b, ex) \in \mathsf{Ret}(b)$, then $t = 0$; $\langle \kappa' \rangle = \langle \kappa'' \rangle$; $\mathsf{q}' = (b, \mathrm{ex})$; and $\nu' = \nu [P(b) := \nu'']$
	- if vertex q is any other kind of vertex, then $\nu + t' \in \text{Inv}(q)$ for all $t' \in [0, t]$; $\nu + t \in E(q, a)$; and $\langle \kappa' \rangle = \langle \kappa \rangle, q' \in X(q, a)$, and $\nu' = (\nu + t) [\rho(a) := 0]$ D.

Theorem

Termination problem is undecidable for recursive timed automata with at least three clocks. Moreover, termination game problem is undecidable for recursive timed automata with at least two clocks.

[Recursive State Machines](#page-3-0)

- **[Labelled Transition Systems](#page-3-0)**
- **[Games on Labelled Transition Systems](#page-5-0)**
- **[Recursive State Machines](#page-7-0)**
- [Semantics of RSM](#page-10-0)

[Recursive Timed Automata](#page-13-0)

- **•** [Definition](#page-13-0)
- [RTA semantics](#page-16-0)

(3) [Undecidability of RTA Termination with](#page-18-0) ≥ 3 clocks

- **[Two counter Minsky machines](#page-19-0)**
- \bullet Gadgets DB, HF, P30, P20, HALT A

- [Glitch-free RTA](#page-26-0)
- **[Region Equivalence](#page-28-0)**

A Minsky machine A is a tuple (L, C, D) where: $L = \{\ell_0, \ell_1, \ldots, \ell_n\}$ is the set of states including the distinguished terminal state ℓ_n ; $C = \{c_1, c_2\}$ is the set of two counters; $D = \{\delta_0, \delta_1, \ldots, \delta_{n-1}\}\$ is the set of transitions of the following type:

- $(\textsf{increment}\; \textcolor{red}{c}) \delta_i : \textcolor{red}{c} := \textcolor{red}{c} + 1; \text{goto} \;\ell_k$
- (test-and-decrement $\,c) \delta_i:$ if $\,(\,c>0)\,$ then $\,(\,c:=c-1;\,\,$ goto $\ell_k\,$ else goto ℓ_m

where $c \in \mathcal{C}, \delta_i \in D$ and $\ell_k, \ell_m \in L$.

Proof idea: A configuration $(\ell_i, \mathsf{c}, \mathsf{d})$ of a Minsky machine corresponds to the configuration $(\langle \varepsilon \rangle, \ell_i, \nu)$ such that $\nu(x) = 2^{-c} \cdot 3^{-d}$ and $\nu(y) = 0.$

[Recursive State Machines](#page-3-0)

- **[Labelled Transition Systems](#page-3-0)**
- **[Games on Labelled Transition Systems](#page-5-0)**
- **[Recursive State Machines](#page-7-0)**
- [Semantics of RSM](#page-10-0)

[Recursive Timed Automata](#page-13-0)

- **•** [Definition](#page-13-0)
- [RTA semantics](#page-16-0)

(3) [Undecidability of RTA Termination with](#page-18-0) ≥ 3 clocks

- **[Two counter Minsky machines](#page-19-0)**
- [Gadgets DB, HF, P3O, P2O, HALT](#page-21-0) $^{\mathcal{A}}$

- [Glitch-free RTA](#page-26-0)
- **[Region Equivalence](#page-28-0)**

$$
(\langle \kappa \rangle, (b, en_1), (x_0, 0)) \rightsquigarrow (\langle \kappa, b \rangle, en_1, (x_0, 0))
$$

\n
$$
\xrightarrow{y=0} (\langle \kappa, b \rangle, (B_1, en_2), (x_0, 0)) \rightsquigarrow (\langle \kappa, b, B_1 \rangle, en_2, (x_0, 0))
$$

\n
$$
\xrightarrow{y=0} (\langle \kappa, b, B_1 \rangle, (B_2, en_3), (x_0, 0)) \rightsquigarrow (\langle \kappa, b, B_1, B_2(x_0, 0) \rangle, en_3, (x_0, 0))
$$

\n
$$
\xrightarrow{x=1} \langle 1_{-x_0} (\langle \kappa, b, B_1, B_2(x_0, 0) \rangle, ex_3, (1, 1 - x_0)) \rightsquigarrow (\langle \kappa, b, B_1 \rangle, (B_2, ex_3), (x_0, 1 - x_0))
$$

\n
$$
\xrightarrow{x=1, \{x\}} (\langle x, b, B_1 \rangle, ex_2, (0, 2 - 2 \cdot x_0)) \rightsquigarrow (\langle \kappa, b \rangle, (B_1, ex_2), (0, 2 - 2 \cdot x_0))
$$

\n
$$
\xrightarrow{y=2, \{y\}} (\langle \kappa, b \rangle, ex_1, (2 \cdot x_0, 0)).
$$

 \leftarrow \Box

∢母 \rightarrow - 41 (2) Þ

重

 290

Proof. The main observation here is that, in component HF, starting from the configuration $(\langle \kappa \rangle, (b, en_7), (x_0, 0))$ Achilles has a strategy to terminate only if he chooses to delay the time by $\frac{x_0}{2}$ in component M_9 (called via box B_8). The evolution of the run from $(\langle \kappa \rangle, (b, en_7), (x_0, 0))$ to $(\langle \kappa, b, B_7(x_0, 0), B_8 \rangle, en_9, (x_0, 0))$ is straightforward. Now, in component M_9 Achilles can wait for an arbitrary amount of time before taking a transition to ex_9 and resetting clock x. Let us assume that he waits for t time units, and hence $(\langle \kappa, b, B_7(x_0, 0) \rangle, (B_8, ex_9), (0, t))$ is reached which is controlled by Tortoise. Now Tortoise has a choice between making a transition to ex_8 (believing that $t = \frac{x_0}{2}$) or invoking the component B'_8 (when suspecting that $t \neq \frac{x_0}{2}$).

If Tortoise believes that $t = \frac{x_0}{2}$ then he makes a transition to ex_8 and thus the system reaches the configuration $(\langle \kappa, b \rangle, (B_7, ex_8), (x_0, t))$ giving rise to the following run:

$$
(\langle \kappa, b \rangle, (B_7, ex_8), (x_0, t)) \xrightarrow{x=1, \{x\}} (1-x_0) (\langle \kappa, b \rangle, u_1, (0, 1-x_0+t))
$$

$$
\xrightarrow{y=1, \{y\}} (x_0-t) (\langle \kappa, b \rangle, ex_7, (x_0-t, 0)) \rightsquigarrow (\langle \kappa \rangle, (b, ex_7), (x_0-t, 0)).
$$

Ashutosh Trivedi and Dominik Wojtczak [Recursive Timed Automata](#page-1-0) May 20, 2019 23 / 32

. p

活

一 4 (語)

K ロト K 倒 ト K 走 ト

 290

Ashutosh Trivedi and Dominik Wojtczak [Recursive Timed Automata](#page-1-0) May 20, 2019 25 / 32

重 J.

× \prec

K ロ ▶ K 御 ▶ K 舌

重

 299

[Recursive State Machines](#page-3-0)

- **[Labelled Transition Systems](#page-3-0)**
- **[Games on Labelled Transition Systems](#page-5-0)**
- **[Recursive State Machines](#page-7-0)**
- [Semantics of RSM](#page-10-0)

[Recursive Timed Automata](#page-13-0)

- **•** [Definition](#page-13-0)
- [RTA semantics](#page-16-0)

[Undecidability of RTA Termination with](#page-18-0) \geq 3 clocks

- **[Two counter Minsky machines](#page-19-0)**
- \bullet Gadgets DB, HF, P30, P20, HALT A

[Decidability of Reachability on Glitch-free RTA](#page-26-0) [Glitch-free RTA](#page-26-0)

• [Region Equivalence](#page-28-0)

We say that a recursive timed automaton is glitch-free if for every box either all clocks are passed by value or none is passed by value, i.e. for each $b \in B$ we have that either $P(b) = C$ or $P(b) = \emptyset$. Any general recursive timed automaton with one clock is trivially

glitch-free.

[Recursive State Machines](#page-3-0)

- **[Labelled Transition Systems](#page-3-0)**
- **[Games on Labelled Transition Systems](#page-5-0)**
- **[Recursive State Machines](#page-7-0)**
- [Semantics of RSM](#page-10-0)

[Recursive Timed Automata](#page-13-0)

- **•** [Definition](#page-13-0)
- [RTA semantics](#page-16-0)

[Undecidability of RTA Termination with](#page-18-0) \geq 3 clocks

- **[Two counter Minsky machines](#page-19-0)**
- \bullet Gadgets DB, HF, P30, P20, HALT A

[Decidability of Reachability on Glitch-free RTA](#page-26-0) **• [Glitch-free RTA](#page-26-0)**

• [Region Equivalence](#page-28-0)

For every RTAT we define regional equivalence relation $\mathcal{E}_R \subseteq \mathcal{S}_T \times \mathcal{S}_T$. For configurations $s = (\langle \kappa \rangle, q, \nu)$ and $s' = (\langle \kappa' \rangle, q', \nu')$, $[s] = [s']$ if:

\n- $$
q = q', [v] = [v'],
$$
 and
\n- $\kappa = (b_1, v_1), (b_2, v_2), \ldots, (b_n, v_n)$ and
\n- $\kappa' = (b'_1, v'_1), (b'_2, v'_2), \ldots, (b'_n, v'_n)$ are such that for every $1 \leq i \leq n$ we have $[v_i] = [v'_i]$ and $b_i = b'_i$.
\n

4 0 8

Bisimulation of Region Equivalence

Given: $s = (\langle \kappa \rangle, q, \nu)$ and $s' = (\langle \kappa' \rangle, q', \nu')$ such that $[s] = [s']$, timed action $(t, a) \in X_{\tau}$ such that $X_{\tau}(s,(t, a)) = s_{a} (= (\kappa_{a}, (\alpha_{a}, \nu_{a})))$ **Find:** (t', a) such that $X_{\mathcal{T}}(s', (t', a)) = s_a' (= (\kappa_a', (\mathfrak{q}_a', \nu_a')))$ and $[s_a] = [s_a']$

•
$$
q = (b, en) \in Call
$$
: $t = 0$, $\langle \kappa_a \rangle = \langle \kappa, (b, \nu) \rangle$, $q_a = en$, and $\nu_a = \nu$.
\n $q' = q$ is also a call port. So, $t' = 0$, and
\n $\langle \kappa'_a \rangle = \langle \kappa', (b, \nu') \rangle$, $q'_a = en$, and $\nu'_a = \nu_a$. Trivially, $[s_a] = [s'_a]$.

- $q = e^x \in Ex$: Let $\langle \kappa \rangle = \langle \kappa_*,(b, \nu_*) \rangle$. So, $t = 0$; context $\langle \kappa_a \rangle = \langle \kappa_* \rangle$; $q_a = (b, ex)$; and $\nu_a = \nu [P(b) := \nu_*]$. Let the context $\langle \kappa' \rangle$ be $\langle \kappa'_*,(\vec{b},\nu'_*) \rangle$. $q' = q$ is an exit node. So, $t' = 0, \langle \kappa'_a \rangle = \langle \kappa'_* \rangle$ and $\nu'_{a} = \nu' [P(b) := \nu'_{*}].$
	- $P(b) = C$: In this case $\nu_a = \nu_*$ and $\nu'_a = \nu'_*,$ and since $[\nu_*] = [\nu'_*]$ we get that $[\nu_a] = [\nu_a']$.
	- $P(b) = \emptyset$. In this case $\nu_a = \nu$ and $\nu'_a = \nu'$, and since $[\nu] = [\nu']$ we get that $[\nu_a] = [\nu_a']$.
- \bullet For other q: Follows by classical region equivalence relation.

- 3

 $\langle \vert \bar{m} \vert \rangle$, $\langle \vert \bar{m} \vert \rangle$, $\langle \vert \bar{m} \rangle$, $\langle \vert \bar{m} \rangle$

Theorem

Reachability (termination) problems and games on glitch-free RTA T can be reduced to solving reachability (termination) problems and games, respectively, on the corresponding region abstraction $\mathcal{T}^{\rm RG}$.

Complexity results for Reachability in Glitch-free RTAs

Table 2. Complexity results for glitch-free RTAs

Table 3. Complexity results for 1-box RTAs with only global clocks

Table 4. Complexity results for 1-exit RTAs with only local clocks

(□) (f)